26 research outputs found

    Prediction of short-term health outcomes in preterm neonates from heart-rate variability and blood pressure using boosted decision trees

    Get PDF
    Background and Objective: Efficient management of low blood pressure (BP) in preterm neonates remains challenging with considerable variability in clinical practice. There is currently no clear consensus on what constitutes a limit for low BP that is a risk to the preterm brain. It is argued that a personalised approach rather than a population based threshold is more appropriate. This work aims to assist healthcare professionals in assessing preterm wellbeing during episodes of low BP in order to decide when and whether hypotension treatment should be initiated. In particular, the study investigates the relationship between heart rate variability (HRV) and BP in preterm infants and its relevance to a short-term health outcome. Methods: The study is performed on a large clinically collected dataset of 831 h from 23 preterm infants of less than 32 weeks gestational age. The statistical predictive power of common HRV features is first assessed with respect to the outcome. A decision support system, based on boosted decision trees (XGboost), was developed to continuously estimate the probability of neonatal morbidity based on the feature vector of HRV characteristics and the mean arterial blood pressure. Results: It is shown that the predictive power of the extracted features improves when observed during episodes of hypotension. A single best HRV feature achieves an AUC of 0.87. Combining multiple HRV features extracted during hypotensive episodes with the classifier achieves an AUC of 0.97, using a leave-one-patient-out performance assessment. Finally it is shown that good performance can even be achieved using continuous HRV recordings, rather than only focusing on hypotensive events – this had the benefit of not requiring invasive BP monitoring. Conclusions: The work presents a promising step towards the use of multimodal data in providing objective decision support for the prediction of short-term outcome in preterm infants with hypotensive episodes

    Heart rate variability during periods of low blood pressure as a predictor of short-term outcome in preterms

    Get PDF
    Efficient management of low blood pressure (BP) in preterm neonates remains challenging with a considerable variability in clinical practice. The ability to assess preterm wellbeing during episodes of low BP will help to decide when and whether hypotension treatment should be initiated. This work aims to investigate the relationship between heart rate variability (HRV), BP and the short-term neurological outcome in preterm infants less than 32 weeks gestational age (GA). The predictive power of common HRV features with respect to the outcome is assessed and shown to improve when HRV is observed during episodes of low mean arterial pressure (MAP) - with a single best feature leading to an AUC of 0.87. Combining multiple features with a boosted decision tree classifier achieves an AUC of 0.97. The work presents a promising step towards the use of multimodal data in building an objective decision support tool for clinical prediction of short-term outcome in preterms who suffer episodes of low BP

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    Novel LHC collimator materials: High-energy Hadron beam impact tests and nondestructive postirradiation examination

    No full text
    The LHC collimation system must adopt materials with excellent thermal shock resistance, high electrical conductivity, geometrical stability, and radiation hardness. Two novel composites, Molybdenum–Carbide–Graphite and Copper–Diamond, are proposed for the LHC collimation upgrade. A postirradiation examination was performed to assess the status of the composites, tested under intense proton beam impacts at the CERN HiRadMat facility. Metrology measurements, computed tomography, and 3D topography allowed to evaluate the localized spallation induced by the beam. This article provides an overview of the thermophysical characterization of the two composites before irradiation and nondestructive postirradiation results

    Data-driven ICU management: Using Big Data and algorithms to improve outcomes

    No full text
    The digitalization of the Intensive Care Unit (ICU) led to an increasing amount of clinical data being collected at the bedside. The term "Big Data" can be used to refer to the analysis of these datasets that collect enormous amount of data of different origin and format. Complexity and variety define the value of Big Data. In fact, the retrospective analysis of these datasets allows to generate new knowledge, with consequent potential improvements in the clinical practice. Despite the promising start of Big Data analysis in medical research, which has seen a rising number of peer-reviewed articles, very limited applications have been used in ICU clinical practice. A close future effort should be done to validate the knowledge extracted from clinical Big Data and implement it in the clinic. In this article, we provide an introduction to Big Data in the ICU, from data collection and data analysis, to the main successful examples of prognostic, predictive and classification models based on ICU data. In addition, we focus on the main challenges that these models face to reach the bedside and effectively improve ICU care.status: Published onlin

    Staged implementation of low-impedance collimation in IR7: plans for LS2

    No full text
    The HL-LHC upgrade baseline foresees to replace all secondary collimators of IR7 until LS3 in order to ensure a sufficient margin for beam stability with the high-brightness upgraded beams. The present TCSG design is based on a carbon-fibre composite (CFC) material and will be replaced with a new low-impedance design (TCSPM). The TCSPM design is based on a Molybdenum-Graphite (MoGr) composite material coated with pure Molybdenum. These collimators also embed in-jaw beam position monitors (BPMs) for a fast alignment and local orbit monitoring as well as an additional BPM for measurements of the orbit transverse to the collimation pane. A staged deployment strategy of the low-impedance upgrade is proposed that foresees to install 4 TCSPM collimators per beam in LS2 and the remaining 7 in LS3. In this note, the slots to be equipped with the TCSPM in LS2 are defined

    Development and validation of the creatinine clearance predictor machine learning models in critically ill adults

    No full text
    Abstract Background In critically ill patients, measured creatinine clearance (CrCl) is the most reliable method to evaluate glomerular filtration rate in routine clinical practice and may vary subsequently on a day-to-day basis. We developed and externally validated models to predict CrCl one day ahead and compared them with a reference reflecting current clinical practice. Methods A gradient boosting method (GBM) machine-learning algorithm was used to develop the models on data from 2825 patients from the EPaNIC multicenter randomized controlled trial database. We externally validated the models on 9576 patients from the University Hospitals Leuven, included in the M@tric database. Three models were developed: a “Core” model based on demographic, admission diagnosis, and daily laboratory results; a “Core + BGA” model adding blood gas analysis results; and a “Core + BGA + Monitoring” model also including high-resolution monitoring data. Model performance was evaluated against the actual CrCl by mean absolute error (MAE) and root-mean-square error (RMSE). Results All three developed models showed smaller prediction errors than the reference. Assuming the same CrCl of the day of prediction showed 20.6 (95% CI 20.3–20.9) ml/min MAE and 40.1 (95% CI 37.9–42.3) ml/min RMSE in the external validation cohort, while the developed model having the smallest RMSE (the Core + BGA + Monitoring model) had 18.1 (95% CI 17.9–18.3) ml/min MAE and 28.9 (95% CI 28–29.7) ml/min RMSE. Conclusions Prediction models based on routinely collected clinical data in the ICU were able to accurately predict next-day CrCl. These models could be useful for hydrophilic drug dosage adjustment or stratification of patients at risk. Trial registration. Not applicable
    corecore